The Fractional Fourier Transform and Applications

نویسندگان

  • David H. Bailey
  • Paul N. Swarztrauber
چکیده

This paper describes the \fractional Fourier transform", which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e 2 , the fractional Fourier transform is based on fractional roots of unity e 2 i , where is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with non-integer periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques. Bailey is with the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Ames Research Center, Mo ett Field, CA 94035. Swarztrauber is with the National Center for Atmospheric Research, Boulder, CO 80307, which is sponsored by National Science Foundation. This work was completed while Swarztrauber was visiting the Research Institute for Advanced Computer Science (RIACS) at NASA Ames. Swarztrauber's work was funded by the NAS Systems Division via Cooperative Agreement NCC 2-387 between NASA and the Universities Space Research Association.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Fourier Transform Based OFDMA for Doubly Dispersive Channels

The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...

متن کامل

Simulation of an Airy Beam with Optical Vortex under Fractional Fourier Transforms

First, this study obtained the fields of an Airy beam (AiB) with optical vortex (OV) for a Fourier transform (FT) system and a fractional Fourier transform (fractional FT) system; thereafter, their intensity and phase patterns were simulated numerically. The splitting on each line of the phase pattern indicates the position of an OV. The results show that the OV position will change when the po...

متن کامل

The fractional Fourier transform: theory, implementation and error analysis

The fractional Fourier transform is a time–frequency distribution and an extension of the classical Fourier transform. There are several known applications of the fractional Fourier transform in the areas of signal processing, especially in signal restoration and noise removal. This paper provides an introduction to the fractional Fourier transform and its applications. These applications deman...

متن کامل

Thermo-Viscoelastic Interaction Subjected to Fractional Fourier law with Three-Phase-Lag Effects

In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically varying heat sources. Three-phase-lag thermoelastic model, Green Naghdi models II and III (i.e., the models which predicts the...

متن کامل

Applications on Generalized Two-Dimensional Fractional Sine Transform In the Range

Various transforms are employed for signal processing to obtain useful information, which is not explicitly available when the signal is in the time domain. Most of the real time signals such as speech, biomedical signals, etc., are non-stationary signals. The Fourier transform (FT), used for most of the signal processing applications, determines the frequency components present in the signal b...

متن کامل

The Fractional Fourier Transform and Harmonic Oscillation

The ath-order fractional Fourier transform is a generalization of the ordinary Fourier transform such that the zeroth-order fractional Fourier transform operation is equal to the identity operation and the first-order fractional Fourier transform is equal to the ordinary Fourier transform. This paper discusses the relationship of the fractional Fourier transform to harmonic oscillation; both co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Review

دوره 33  شماره 

صفحات  -

تاریخ انتشار 1991